Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.076
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38530752

RESUMO

A Gram-stain-positive bacterium, designated YN-L-19T, was isolated from a sludge sample collected from a pesticide-manufacturing plant. Cells of YN-L-19T were strictly aerobic, non-spore-forming, non-motile and ovoid-shaped. Colonies were small, smooth and yellow. Growth occurred at 10-37 °C (optimum, 30 °C), pH 5.0-9.0 (optimum, 7.0) and 0-3.0 % (w/v) NaCl (optimum 0.5 %). Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that YN-L-19T was affiliated to the family Microbacteriaceae and most closely related to Diaminobutyricimonas aenilata, Terrimesophilobacter mesophilus, Planctomonas deserti and Curtobacterium luteum. The major cellular fatty acids of YN-L-19T were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and C16 : 0. The predominant menaquinone was MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid and one unidentified lipid. The average amino acid identity values between strain YN-L-19T and the related strains were 57.9-61.9 %, which were below the genus boundary (70 %). On the basis of the evidence presented in this study, strain YN-L-19T represents a novel species of a new genus in the family Microbacteriaceae, for which the name Ruicaihuangia caeni gen. nov., sp. nov. (type strain YN-L-19T=CCTCC AB 2022401T= KCTC 49935T) is proposed.


Assuntos
Actinomycetales , Ácidos Graxos , Ácidos Graxos/química , Esgotos , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Composição de Bases , Peptidoglicano/química , Bactérias Gram-Positivas , Vitamina K 2/química
2.
Analyst ; 149(8): 2204-2222, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517346

RESUMO

The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.


Assuntos
Bactérias , Peptidoglicano , Peptidoglicano/química , Bactérias/metabolismo , Proteínas de Ligação às Penicilinas , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo
3.
J Am Chem Soc ; 146(11): 7400-7407, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456799

RESUMO

Peptidoglycan (PG), an essential exoskeletal polymer in bacteria, is a well-known antibiotic target. PG polymerization requires the action of bacterial transglycosylases (TGases), which couple the incoming glycosyl acceptor to the donor. Interfering with the TGase activity can interrupt the PG assembly. Existing TGase inhibitors like moenomycin and Lipid II analogues always occupy the TGase active sites; other strategies to interfere with proper PG elongation have not been widely exploited. Inspired by the natural 1,6-anhydro-MurNAc termini that mark the ends of PG strands in bacteria, we hypothesized that the incorporation of an anhydromuramyl-containing glycosyl acceptor by TGase into the growing PG may effectively inhibit PG elongation. To explore this possibility, we synthesized 4-O-(N-acetyl-ß-d-glucosaminyl)-1,6-anhydro-N-acetyl-ß-d-muramyl-l-Ala-γ-d-Glu-l-Lys-d-Ala-d-Ala, 1, within 15 steps, and demonstrated that this anhydromuropeptide and its analogue lacking the peptide, 1-deAA, were both utilized by bacterial TGase as noncanonical anhydro glycosyl acceptors in vitro. The incorporation of an anhydromuramyl moiety into PG strands by TGases afforded efficient termination of glycan chain extension. Moreover, the preliminary in vitro studies of 1-deAA against Staphylococcus aureus showed that 1-deAA served as a reasonable antimicrobial adjunct of vancomycin. These insights imply the potential application of such anhydromuropeptides as novel classes of PG-terminating inhibitors, pointing toward novel strategies in antibacterial agent development.


Assuntos
Antibacterianos , Peptidoglicano , Peptidoglicano/química , Antibacterianos/farmacologia , Bactérias/metabolismo , Glicosiltransferases/metabolismo
4.
Nat Commun ; 15(1): 1343, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351082

RESUMO

The bacterial cell-wall peptidoglycan is made of glycan strands crosslinked by short peptide stems. Crosslinks are catalyzed by DD-transpeptidases (4,3-crosslinks) and LD-transpeptidases (3,3-crosslinks). However, recent research on non-model species has revealed novel crosslink types, suggesting the existence of uncharacterized enzymes. Here, we identify an LD-transpeptidase, LDTGo, that generates 1,3-crosslinks in the acetic-acid bacterium Gluconobacter oxydans. LDTGo-like proteins are found in Alpha- and Betaproteobacteria lacking LD3,3-transpeptidases. In contrast with the strict specificity of typical LD- and DD-transpeptidases, LDTGo can use non-terminal amino acid moieties for crosslinking. A high-resolution crystal structure of LDTGo reveals unique features when compared to LD3,3-transpeptidases, including a proline-rich region that appears to limit substrate access, and a cavity accommodating both glycan chain and peptide stem from donor muropeptides. Finally, we show that DD-crosslink turnover is involved in supplying the necessary substrate for LD1,3-transpeptidation. This phenomenon underscores the interplay between distinct crosslinking mechanisms in maintaining cell wall integrity in G. oxydans.


Assuntos
Peptidil Transferases , Peptidil Transferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Bactérias , Peptídeos/química , Polissacarídeos , Peptidoglicano/química
5.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043796

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Peptidoglicano , Peptidil Transferases , Proteínas de Bactérias/química , Resistência beta-Lactâmica , beta-Lactamas/farmacologia , Catálise , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Peptidoglicano/química , Peptidil Transferases/química , Peptidil Transferases/genética
6.
J Biol Chem ; 300(1): 105494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006948

RESUMO

Peptidoglycan is an essential component of the bacterial cell envelope that contains glycan chains substituted by short peptide stems. Peptide stems are polymerized by D,D-transpeptidases, which make bonds between the amino acid in position four of a donor stem and the third residue of an acceptor stem (4-3 cross-links). Some bacterial peptidoglycans also contain 3-3 cross-links that are formed by another class of enzymes called L,D-transpeptidases which contain a YkuD catalytic domain. In this work, we investigate the formation of unusual bacterial 1-3 peptidoglycan cross-links. We describe a version of the PGFinder software that can identify 1-3 cross-links and report the high-resolution peptidoglycan structure of Gluconobacter oxydans (a model organism within the Acetobacteraceae family). We reveal that G. oxydans peptidoglycan contains peptide stems made of a single alanine as well as several dipeptide stems with unusual amino acids at their C-terminus. Using a bioinformatics approach, we identified a G. oxydans mutant from a transposon library with a drastic reduction in 1-3 cross-links. Through complementation experiments in G. oxydans and recombinant protein production in a heterologous host, we identify an L,D-transpeptidase enzyme with a domain distantly related to the YkuD domain responsible for these non-canonical reactions. This work revisits the enzymatic capabilities of L,D-transpeptidases, a versatile family of enzymes that play a key role in bacterial peptidoglycan remodelling.


Assuntos
Proteínas de Bactérias , Gluconobacter oxydans , Modelos Moleculares , Peptidoglicano , Peptidil Transferases , Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/metabolismo , Peptidil Transferases/química , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Software , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/genética , Biologia Computacional , Teste de Complementação Genética , Estrutura Terciária de Proteína
7.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37921447

RESUMO

In this study, two novel alkalitolerant strains (FJAT-53046T and FJAT-53715T) were isolated from sediment samples collected in Zhangzhou, PR China. Phylogeny based on 16S rRNA gene sequences suggested that strains FJAT-53046T and FJAT-53715T were new members of the genus Pseudalkalibacillus. The two novel strains showed the highest 16S rRNA gene sequence similarity to Pseudalkalibacillus hwajinpoensis DSM 16206T, with values of 97.4 and 97.6 %, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains and the reference strain were 77.2 and 79.6 %, 20.9 and 30.2 %, respectively, which were below the prokaryotic species delineation thresholds. The ANI and dDDH values between strains FJAT-53046T and FJAT-53715T were 86.0 and 30.2 %, respectively, suggesting that they belonged to different species in the genus Pseudalkalibacillus. The major respiratory quinone in both strains was MK-7 and the major cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids in both novel strains. Combined with results stemming from the determination of physical and biochemical characteristics, chemical properties, and genome analysis, strains FJAT-53046T and FJAT-53715T are proposed to represent two novel species of the genus Pseudalkalibacillus, for which the names Pseudalkalibacillus spartinae sp. nov. and Pseudalkalibacillus sedimenti sp. nov. are proposed. The type strains are FJAT-53046T (=GDMCC 1.3077T=JCM 35611T) and FJAT-53715T (=GDMCC 1.3076T=JCM 35610T), respectively.


Assuntos
Bacillus , Ácidos Graxos , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Microbiologia do Solo , Parede Celular/química , Ácido Diaminopimélico/química , Peptidoglicano/química , Vitamina K 2/química
8.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37861393

RESUMO

A Gram-stain-positive, catalase-positive, non-motile bacteria, with a rod-coccus cycle (designated as EH-1B-1T) was isolated from a soil sample from Union Glacier in Ellsworth Mountains, Antarctica. Strain EH-1B-1T had an optimal growth temperature of 28 °C and grew at pH 7-10. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and anteiso-C17 : 0. The G+C content based on the whole genome sequence was 63.1 mol%. Strain EH-1B-1T was most closely related to members of the genus Arthrobacter, namely Arthrobacter subterraneus and Arthrobacter tumbae. The strain grew on tryptic soy agar, Reasoner's 2A agar, lysogeny broth agar and nutrient agar. The average nucleotide identity and digital DNA-DNA hybridization values between strain EH-1B-1T and its closest reference type strains ranged from 78 to 88 % and from 20.9 to 36.3 %, respectively. Based on phenotypic, chemotypic and genotypic evidence, it is proposed that strain EH-1B-1T represents a novel species of Arthrobacter, for which the name Arthrobacter vasquezii sp. nov. is proposed, with strain EH-1B-1T (RGM 3386T=LMG 32961T) as the type strain.


Assuntos
Arthrobacter , Ácidos Graxos , Ácidos Graxos/química , Fosfolipídeos/química , Camada de Gelo , Regiões Antárticas , Ágar , Composição de Bases , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/química , Peptidoglicano/química , Solo
9.
Nat Commun ; 14(1): 6706, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872144

RESUMO

Peptidoglycan, a gigadalton polymer, functions as the scaffold for bacterial cell walls and provides cell integrity. Peptidoglycan is remodelled by a large and diverse group of peptidoglycan hydrolases, which control bacterial cell growth and division. Over the years, many studies have focused on these enzymes, but knowledge on their action within peptidoglycan mesh from a molecular basis is scarce. Here, we provide structural insights into the interaction between short peptidoglycan fragments and the entire sacculus with two evolutionarily related peptidases of the M23 family, lysostaphin and LytM. Through nuclear magnetic resonance, mass spectrometry, information-driven modelling, site-directed mutagenesis and biochemical approaches, we propose a model in which peptidoglycan cross-linking affects the activity, selectivity and specificity of these two structurally related enzymes differently.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Peptidoglicano/química , Hidrolases , Lisostafina/análise , Lisostafina/química , Espectrometria de Massas/métodos , Parede Celular/química
10.
Biomol NMR Assign ; 17(2): 257-263, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742292

RESUMO

Antibiotic resistance is a growing problem and a global threat for modern healthcare. New approaches complementing the traditional antibiotic drugs are urgently needed to secure the ability to treat bacterial infections also in the future. Among the promising alternatives are bacteriolytic enzymes, such as the cell wall degrading peptidoglycan hydrolases. Staphylococcus aureus LytM, a Zn2+-dependent glycyl-glycine endopeptidase of the M23 family, is one of the peptidoglycan hydrolases. It has a specificity towards staphylococcal peptidoglycan, making it an interesting target for antimicrobial studies. LytM hydrolyses the cell wall of S. aureus, a common pathogen with multi-resistant strains that are difficult to treat, such as the methicillin-resistant S. aureus, MRSA. Here we report the 1H, 15N and 13C chemical shift assignments of S. aureus LytM N-terminal domain and linker region, residues 26-184. These resonance assignments can provide the basis for further studies such as elucidation of structure and interactions.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Peptidoglicano/química , Ressonância Magnética Nuclear Biomolecular , Antibacterianos
11.
Adv Exp Med Biol ; 1415: 521-526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440081

RESUMO

Peptidoglycan (PGN) recognition protein 2 (PGRP2; N-acetylmuramyl-L-alanine amidase (NAMAA)) activity in corneal epithelial cells is thought to inhibit corneal inflammation by reducing the PGN-induced cytokines. PGRP2 has not been reported in human retinal pigment epithelial (RPE) cells. RPE cell lysate NAMAA activity was measured densitometrically via cleavage of FITC-tagged muramyl dipeptide (FITCMDP). RPE lysate degradation of the cytopathic activity of nucleotide-binding oligomerization domain (NOD) receptor agonists was assessed by caspase-3 activation and DNA ladder detection and quantitation. PGRP2/NAMAA protein was detected in RPE cells by immunofluorescent antibody assay. RPE lysate NAMAA cleaved FITCMDP in a dose- and time-dependent manner. RPE lysate selectively inhibited PGN cytopathic activity of NOD1 agonists containing D-γ-glutamyl-meso-diaminopimelic acid and NOD2 containing L-alanyl-D-isoglutamine. The results suggest RPE PGRP2 amidase selectively degrades PGN that stimulate NOD-mediated cytopathic activity. The failure of RPE NAMAA to degrade pro-inflammatory PGN may play a role in bacterial retinopathies.


Assuntos
Citocinas , Peptidoglicano , Humanos , Peptidoglicano/química , Peptidoglicano/metabolismo , Fluoresceína-5-Isotiocianato , Citocinas/metabolismo , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Amidoidrolases/metabolismo , Retina/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo
12.
J Med Chem ; 66(15): 10226-10237, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37477249

RESUMO

Drug resistant bacterial infections have emerged as one of the greatest threats to public health. The discovery and development of new antimicrobials and anti-infective strategies are urgently needed to address this challenge. Vancomycin is one of the most important antibiotics for the treatment of Gram-positive infections. Here, we introduce the vancomycin-arginine conjugate (V-R) as a highly effective antimicrobial against actively growing mycobacteria and difficult-to-treat mycobacterial biofilm populations. Further improvement in efficacy through combination treatment of V-R to inhibit peptidoglycan synthesis and ethambutol to inhibit arabinogalactan synthesis underscores the ability to identify compound synergies to more effectively target the Achilles heel of the cell-wall assembly. Moreover, we introduce mechanistic activity data and a molecular model derived from a d-Ala-d-Ala-bound vancomycin structure that we hypothesize underlies the molecular basis for the antibacterial improvement attributed to the arginine modification that is specific to peptidoglycan chemistry employed by mycobacteria and distinct from Gram-positive pathogens.


Assuntos
Mycobacterium , Vancomicina , Vancomicina/farmacologia , Vancomicina/química , Peptidoglicano/química , Arginina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
13.
J Med Chem ; 66(15): 10238-10240, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37477251

RESUMO

Vancomycin-like drugs target peptidoglycan (PG) via binding to C-terminal d-Ala-d-Ala dipeptide. An engineered vancomycin has enhanced affinity for the PG stem peptide, due to probable interactions with a third residue, meso-diaminopimelic acid, in the PG. This engineered vancomycin displays enhanced killing of mycobacteria.


Assuntos
Peptidoglicano , Vancomicina , Vancomicina/química , Peptidoglicano/química , Resistência a Vancomicina , Antibacterianos/farmacologia , Antibacterianos/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-37129938

RESUMO

Three Gram-positive-staining strains FJAT-49754T, FJAT-49682 and FJAT-49731 were isolated from the citrus rhizosphere soil sample. These strains showed the highest 16S rRNA gene sequence similarity with the type strain of Lederbergia panacisoli (97.8-97.9 %). The 16S rRNA gene sequence similarities between strains FJAT-49754T, FJAT-49682, and FJAT-49731 were 99.9 %. The average nucleotide identity (ANI) values between strains FJAT-49754T, FJAT-49682 and FJAT-49731 were above 96 %, while the ANI values with the members of the genus Lederbergia were below 95 %, which were below the cut-off level for prokaryotic species delineation. The above results suggest that strains FJAT-49754T, FJAT-49682 and FJAT-49731 belong to a novel species of the genus Lederbergia. Growth of strain FJAT-49754T was observed at 10-40 °C (optimum at 30 °C, pH 6.0-10.0 (optimum at pH 8.0), and NaCl tolerance up to 7 % (w/v) (optimum at 1 %). MK-7 was the only menaquinone detected in strain FJAT-49754T, and the main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids of strain FJAT-49754T were anteiso-C15 : 0, iso-C15 : 0, and C16 : 0. The genomic DNA G+C content of strain FJAT-49754T was 38.7 %. Based on the above results, strain FJAT-49754T represents a novel species of the genus Lederbergia, for which the name Lederbergia citrea sp. nov., is proposed. The type strain is FJAT-49754T (=CCTCC AB 2019211T=LMG 31589T).


Assuntos
Ácidos Graxos , Rizosfera , Ácidos Graxos/química , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Composição de Bases , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Ácido Diaminopimélico/química , Análise de Sequência de DNA , Parede Celular/química , Peptidoglicano/química
15.
Biochemistry ; 62(8): 1342-1346, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37021938

RESUMO

Some bacteria survive in nutrient-poor environments and resist killing by antimicrobials by forming spores. The cortex layer of the peptidoglycan cell wall that surrounds mature spores contains a unique modification, muramic-δ-lactam, that is essential for spore germination and outgrowth. Two proteins, the amidase CwlD and the deacetylase PdaA, are required for muramic-δ-lactam synthesis in cells, but their combined ability to generate muramic-δ-lactam has not been directly demonstrated. Here we report an in vitro reconstitution of cortex peptidoglycan biosynthesis, and we show that CwlD and PdaA together are sufficient for muramic-δ-lactam formation. Our method enables characterization of the individual reaction steps, and we show for the first time that PdaA has transamidase activity, catalyzing both the deacetylation of N-acetylmuramic acid and cyclization of the product to form muramic-δ-lactam. This activity is unique among peptidoglycan deacetylases and is notable because it may involve the direct ligation of a carboxylic acid with a primary amine. Our reconstitution products are nearly identical to the cortex peptidoglycan found in spores, and we expect that they will be useful substrates for future studies of enzymes that act on the spore cortex.


Assuntos
Peptidoglicano , Esporos Bacterianos , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Peptidoglicano/química , Bactérias/metabolismo , Parede Celular/química , Lactamas/metabolismo , Proteínas de Bactérias/metabolismo
16.
Chembiochem ; 24(11): e202300205, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37069132

RESUMO

The O-acetylation of the muramic acid residues in peptidoglycan (PG) is a modification that protects the bacteria from lysis due to the action of lysozyme. In Gram-negative bacteria, deacetylation is required to allow lytic transglycosylases to promote PG cleavage during cell growth and division. This deacetylation is catalyzed by O-acetylpeptidoglycan esterase (Ape) which is a serine esterase and employs covalent catalysis via a serine-linked acyl enzyme intermediate. Loss of Ape activity affects the size and shape of bacteria and dramatically reduces virulence. In this work, we report the first rationally designed aldehyde-based inhibitors of Ape from Campylobacter jejuni. The most potent of these acts as a competitive inhibitor with a Ki value of 13 µM. We suspect that the inhibitors are forming adducts with the active site serine that closely mimic the tetrahedral intermediate of the normal catalytic cycle. Support for this notion is found in the observation that reduction of the aldehyde to an alcohol effectively abolishes the inhibition.


Assuntos
Acetilesterase , Hominidae , Animais , Peptidoglicano/química , Aldeídos/farmacologia , Esterases/química , Bactérias/metabolismo , Serina , Hominidae/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-36943347

RESUMO

A lactic acid bacterium isolated from pig faeces was characterized using a polyphasic approach. The strain was Gram-stain-positive, rod-shaped, and facultative anaerobic. Phylogenetic analysis of the 16S rRNA gene sequence indicated that the isolate belonged to the genus Lacticaseibacillus. The multi-locus sequence tree revealed that the strain formed a sub-cluster adjacent to Lacticaseibacillus kribbianus. The main fatty acids were C16 : 0 and C18 : 1ω9c. The average nucleotide identity value, average amino acid identity, and genome-to-genome distance for YH-lacS6T and its most closely related strain, L. kribbianus, were 85.4, 85.2 and 29.2 %, respectively. The G+C content of the genomic DNA was 61.6 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, aminophospholipids and phospholipids. The cell-wall peptidoglycan did not contain meso-diaminopimelic acid. Thus, YH-lacS6T (=KCTC 21186T=JCM 34954T) represents a novel species. The name Lacticaseibacillus parakribbianus sp. nov. is proposed.


Assuntos
Ácidos Graxos , Lacticaseibacillus , Suínos , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Fazendas , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos/química , Fezes/microbiologia , Peptidoglicano/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-36920836

RESUMO

A Gram-stain-positive, rod-shaped and motile strain, designated FJAT-49705T, was isolated from the citrus rhizosphere soil sample. Strain FJAT-49705T grew at 20-40 °C (optimum, 30 °C) and pH 6.0-11.0 (optimum, pH 7.0) with 0-5 % (w/v) NaCl (optimum, 2 %). Strain FJAT-49705T showed high 16S rRNA gene sequence similarity to 'Bacillus dafuensis' FJAT-25496T (99.7 %) and Cytobacillus solani FJAT-18043T (98.0 %). In phylogenetic (based on 16S rRNA gene sequences) and phylogenomic trees (based on 71 bacterial single-copy genes), strain FJAT-49705T clustered with the members of the genus Cytobacillus. MK-7 was the only isoprenoid quinone present. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The genomic DNA G+C content was 36.9 %. The average nucleotide identity (ANI) values between FJAT-49705T and 'B. dafuensis' FJAT-25496T and C. solani FJAT-18043T were below the cut-off level (95-96 %) recommended as the ANI criterion for interspecies identity. Based on the above results, strain FJAT-49705T represents a novel species of the genus Cytobacillus, for which the name Cytobacillus citreus sp. nov. is proposed. The type strain is FJAT-49705T (=CCTCC AB 2019243T= LMG 31580T).


Assuntos
Ácidos Graxos , Rizosfera , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Composição de Bases , Microbiologia do Solo , Ácido Diaminopimélico/química , Peptidoglicano/química , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Parede Celular/química , Vitamina K 2/química
19.
J Microbiol ; 61(4): 379-388, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36929341

RESUMO

Two novel Gram-stain-positive, aerobic, non-motile, and yellow-pigmented, irregular rod-shaped bacteria (JY.X269 and JY.X270T) were isolated from the near-surface sediments of river in Qinghai Province, P. R. China (32°37'13″N, 96°05'37″E) in July 2019. Both strains were shown to grow at 15-35 °C and pH 7.0-10.0, and in the presence of 0-6.0% (w/v) NaCl. The 16S rRNA gene sequence analysis showed that the isolates were closely related to Ornithinimicrobium cavernae CFH 30183 T (98.6-98.8% 16S rRNA gene sequence similarity), O. ciconiae H23M54T (98.5-98.6%) and O. murale 01-Gi-040T (98.3-98.5%). The phylogenetic and phylogenomic trees based on the 16S rRNA gene and 537 core gene sequences, respectively, revealed that the two strains formed a distinct cluster with the above three species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between our two isolates (JY.X269 and JY.X270T) and other Ornithinimicrobium species were within the ranges of 19.0-23.9% and 70.8-80.4%, respectively, all below the respective recommended 70.0% and 95-96% cutoff point. Furthermore, the major cellular fatty acids (> 10.0%) of strains JY.X269 and JY.X270T were iso-C15:0, iso-C16:0, and summed feature 9. Strain JY.X270T contained MK-8(H4) and ornithine as the predominant menaquinone and diagnostic diamino acid component within the cell wall teichoic acids. ß-cryptoxanthin (C40H56O) can be extracted from strain JY.X270T, and its content is 6.3 µg/ml. Based on results from the phylogenetic, chemotaxonomic, and phenotypic analyses, the two strains could be classified as a novel species of the genus Ornithinimicrobium, for which the name Ornithinimicrobium cryptoxanthini sp. nov. is proposed (type strain JY.X270T = CGMCC 1.19147T = JCM 34882T).


Assuntos
Actinobacteria , Actinomycetales , beta-Criptoxantina , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Rios/microbiologia , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Peptidoglicano/química , Actinomycetales/genética , Ácidos Graxos/química , Vitamina K 2/química
20.
J Agric Food Chem ; 71(13): 5293-5301, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967580

RESUMO

Glycine-rich flexible peptide linkers have been widely adopted in fusion protein engineering; however, they can hardly be cleaved for the separation of fusion partners unless specific protease recognition sites are introduced. Herein, we report the use of the peptidoglycan-targeting staphylolytic enzyme lysostaphin to directly digest the glycine-rich flexible linkers of various lengths including oligoglycine linkers and (G4S)x linkers, without the incorporation of extra amino acids. Using His-MBP-linker-LbCpf1 as a model substrate, we show that both types of linkers could be digested by lysostaphin, and the digestion efficiency improved with increasing linker length. The enzyme LbCpf1 retained full activity after tag removal. We further demonstrated that the proteolytic activity of lysostaphin could be well maintained under different environmental conditions and in the presence of a series of chemical reagents at various concentrations that are frequently used in protein purification and stabilization. In addition, such a digestion strategy could also be applied to remove the SUMO domain linked to LwCas13a via an octaglycine linker. This study extends the applications of lysostaphin beyond an antimicrobial reagent and demonstrates its potential as a novel, efficient, and robust protease for protein engineering.


Assuntos
Lisostafina , Peptídeo Hidrolases , Lisostafina/química , Lisostafina/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Glicina , Parede Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...